
  

Version Control with Git

●  Before we start
●  Sign up at github.com



  

What is Version Control?
(AKA revision control, source control)

●  Tracks changes to files

●  Any file can  be tracked

●  Text (.txt, .csv, .py, .c, .r etc.) works best

●  These allow smart diff / merge etc.
 



  

Why Use Version Control? #1
 

●  A more efficient 
backup

●  Reproducibility

 



  

Why Use Version Control? #2

●  Teamwork



  

Version Control Tracks Changes

●  Changes are tracked sequentially



  

Version Control Tracks Changes

●  Different versions can be saved



  

Version Control Tracks Changes

●  Multiple versions can be merged



  

Version Control Alternatives 
●Subversion (svn) - Centralised
●  Mercurial (hg) - Distributed
●  Git (git) – Distributed

●Most widely used in academia!

●  N.B. GitHub != git
●Alternatives like GitLab exist



  

Graphical Version Control
●SourceTree

●Git Kraken

●Git GUI



  

Local Configuration

●   git config



  

Getting Demo Files

●   git clone 
https://github.com/Southampton-RSG/s
wc-ramp-git



  

Creating a Repository

●   git init
●   git status



  

Tracking Changes to Files  

●   git add
●   git commit



  

Git – add and commit 

Workspace
Staging

Area
Local Repo

Visible File System Git Repository

add

commit



  

Exploring History #1

●   git log 
●   git diff 

 



  

Git – diff #1 
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Git – diff #2
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Restoring Files

  
●  git checkout 



  

Git - restoration 
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Git Workflow – Local Repo.



  

Collaboration

Sarah's computer 
/home/sarah/planets

Fred's computer 
/home/fred/planets

A B



  

Collaboration:
Remote Repositories

● Sign in https://github.com/ 
● Create repository
● git remote add
● git push

https://github.com/


  

Collaboration:
Branches



  

Collaboration:
Creating Branches

● git branch dev
● git checkout dev



  

Collaboration:
Creating Branches 2

● Create rainfall_conversion.py
● git add rainfall_conversion.py
● git commit -m



  

Git Workflow – Remote Repo.



  

Collaboration:
Branches



  

Collaboration:
Feature Branch Exercise

● Check out ‘dev’
● Create a new branch called ‘docs’
● Create and add README.md
● Push to GitHub and merge back to ‘dev’
● Pull the changes back to your computer



  

What next?

●   Ignore files / Merging
●   https://software-carpentry.org
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