

Version Control with Git

● Before we start
● Sign up at github.com

What is Version Control?
(AKA revision control, source control)

● Tracks changes to files

● Any file can be tracked

● Text (.txt, .csv, .py, .c, .r etc.) works best

● These allow smart diff / merge etc.

Why Use Version Control? #1

● A more efficient
backup

● Reproducibility

Why Use Version Control? #2

● Teamwork

Version Control Tracks Changes

● Changes are tracked sequentially

Version Control Tracks Changes

● Different versions can be saved

Version Control Tracks Changes

● Multiple versions can be merged

Version Control Alternatives
●Subversion (svn) - Centralised
● Mercurial (hg) - Distributed
● Git (git) – Distributed

●Most widely used in academia!

● N.B. GitHub != git
●Alternatives like GitLab exist

Graphical Version Control
●SourceTree

●Git Kraken

●Git GUI

Local Configuration

● git config

Getting Demo Files

● git clone
https://github.com/Southampton-RSG/s
wc-ramp-git

Creating a Repository

● git init
● git status

Tracking Changes to Files

● git add
● git commit

Git – add and commit

Workspace
Staging

Area
Local Repo

Visible File System Git Repository

add

commit

Exploring History #1

● git log
● git diff

Git – diff #1

Workspace
Staging

Area
Local Repo

Visible File System Git Repository

diff

diff --staged

Git – diff #2

Workspace
Staging

Area
Local Repo

Visible File System Git Repository

diff HEAD

sl33v51a

f22b25e

g31a45d

HEAD

HEAD ~1

HEAD ~2

diff sl33v51a

Restoring Files

● git checkout

Git - restoration

Workspace
Staging

Area
Local Repo

Visible File System Git Repository

sl33v51a

f22b25e

g31a45d

checkout f22b25e

f22b25e

HEAD

HEAD ~1

HEAD ~2

checkout HEAD
g31a45d

Git Workflow – Local Repo.

Collaboration

Sarah's computer
/home/sarah/planets

Fred's computer
/home/fred/planets

A B

Collaboration:
Remote Repositories

● Sign in https://github.com/
● Create repository
● git remote add
● git push

https://github.com/

Collaboration:
Branches

Collaboration:
Creating Branches

● git branch dev
● git checkout dev

Collaboration:
Creating Branches 2

● Create rainfall_conversion.py
● git add rainfall_conversion.py
● git commit -m

Git Workflow – Remote Repo.

Collaboration:
Branches

Collaboration:
Feature Branch Exercise

● Check out ‘dev’
● Create a new branch called ‘docs’
● Create and add README.md
● Push to GitHub and merge back to ‘dev’
● Pull the changes back to your computer

What next?

● Ignore files / Merging
● https://software-carpentry.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

