
Before we start…

Go to the shared Google Doc,
follow the set up instructions:

http://bit.ly/CESSDA-CES2018

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

CESSDA Technical
Infrastructure
Developing, Testing, and Deploying Tools
and Services

CESSDA Expert Seminar (CES2018)
Ljubljana, Slovenia
September 26 2018

Steve Crouch, Research Software Group
Lead, Software Sustainability Institute
s.crouch@software.ac.uk

Software Sustainability Institute

Cultivate world-class research with software

What we'll do Today

•  Brief recap of CESSDA's Technical Architecture and Software
Maturity Levels

•  Use CESSDA's infrastructure and development practices to
•  Contribute a fix to an example Java application repository
•  Test our fix and extend the existing tests

•  For those new to version control and continuous integration
•  But also to give you experience with CESSDA infrastructure

Need Help?

•  Say hi to your neighbours

•  Ask in the GoogleDoc
§  http://bit.ly/CESSDA-CES2018

•  Sticky notes

•  Our helpers – Peter, Wilko

Session 1:
Summary of CESSDA

Technical Infrastructure

Why have a defined Technical Architecture?

•  Community development at scale is hard
§  Have to balance innovation with usability, sustainability, and stability

•  You need more than a powerful infrastructure
§  Community must develop in a defined, understood, and consistent

manner
§  Community must know what is expected of them

•  Interoperability between infrastructure, components, and people

The CESSDA Technical Architecture

•  A set of principles and guidelines based on established best practice
§  Useful in any software development

•  Many infrastructure documents a hard read – not CESSDA's!

§  Suitably high-level, common sense
§  A good read for developers
§  Not too prescriptive

•  Following the Technical Architecture helps ensure compliance
§  But also genuinely useful for you

•  Become familiar with it

Interoperability Characteristics

•  Again, embody established development best practices

•  Five characteristics
1.  Loosely coupled but coordinated
2.  Sustainable
3.  Extensible
4.  Maintainable
5.  Standards based

Software Development Guidelines I

•  Things you should do to improve acceptance

•  Code structure
§  Solid, commented, minimum complexity, DRY
§ Use code conventions, string localisation, outside config

•  Environment specific information
§ Deploy new developments quickly
§ Use same tools throughout development, testing, deployment
§ Use containers

Software Development Guidelines II

•  Use Technical Architecture as primary guide for decisions
•  Document throughout lifecycle

§ Make operational, development, end-user docs available
§  Keep them maintained!

•  Source code management
§  Bitbucket SCM mandated
§  Each development has own CESSDA repository
§  Each repo linked to CESSDA Continuous Integration

•  Security and privacy: privacy impact assessment expected

Exercise: Evaluate your (Potential)
CESSDA Software

•  To familiarise yourselves with the CESSDA Maturity Levels
•  Use the CESSDA Maturity Levels questionnaire
•  Assess software that either

§  You are developing (or will develop) for CESSDA
§  You are generally familiar with

•  They get you thinking early about software quality in a
number of useful dimensions!

Session 2:
Application development in

CESSDA

Brief introduction to Version Control

•  AKA revision control, source control, source code
management (SCM)

•  Track changes to files

•  Maintain complete history of development

Key Advantages I: A More Efficient Backup

•  Who's been in this situation?

Key Advantages II: Reproducibility

•  Complete history – so can retrieve any version of any files
§ Or sets of files, e.g. a software package

•  Reproducibility becomes simpler
§ Reproducing results of publications

“If you’re not using version control, whatever else you may be doing
with a computer, it isn’t science”

 - Greg Wilson, co-founder of Software Carpentry

Key Advantages III: Aids Collaboration

•  Crucial tool in team development

•  Professional software developers use VC
§  They know who has changed what and when

•  Every large software development project relies on VC
§ Most programmers use it for their small jobs as well

•  Version control is not just for software
§  Papers, small data sets
§  Anything that changes over time, or needs to be shared

Distributed or Centralised SCM?

•  Two types of SCM

§ Centralised: only one master copy of the repository exists, which
has all history, e.g. Subversion or CVS

§ Distributed: each developer in team has own copy of repo, which
you synchronise with the authoritative central repo, e.g. Git or
Mercurial

So what SCMs does Bitbucket support?

•  Bitbucket uses Git (also Mercurial)

•  Written by Linus Torvalds to manage Linux source code
development

•  Very powerful

•  Distributed SCM

Requesting a CESSDA code repository

•  If developing own code from scratch, need to request
CESSDA Bitbucket repository
§  Form:

CESSDA Research Infrastructure Contributor License
Agreement form

§  Supply name, email, Bitbucket user account, project/component
name, repository description, coding language, Bitbucket
account names of other contributors

•  You'll get an email confirming its creation

Session 2: Practical…

The Fibonacci scenario

•  A mathematically generated sequence of numbers
•  Starts with 0 and 1, each following number being an

addition of the previous two numbers in the sequence:
§  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ..

•  We’ll use a Java program that gives you the Fibonacci
number at a particular index (starting with 0) in the
sequence
§  e.g. asking for the 6th number gives us 8

Feature Branch Workflow

Session 2: Practical continued…

Exercise: Diagnose and Fix the Problem

•  Have a look at the source code for Fibonacci in src/main/java/
math/Fibonacci.java

•  See if you can find the problem and correct it, then save the
file

•  Recompile the code (mvn compile) and then manually run the
code a few more times with different arguments to check the
results of other inputs, e.g:
§  java -cp target/classes math.Fibonacci 1
§  java -cp target/classes math.Fibonacci 2
§  java -cp target/classes math.Fibonacci 6
§ …

Session 3:
Using automation to build,
test and deploy our code

Benefits of Automation

•  Productivity: automating code build and test saves time
•  Improvement: running automatic build and test frequently

can find more bugs
•  Reproducibility: automated process reduces mistakes from

manual error, and potentially incorrect results
•  Reuse: automation shows others how to build and test

your software

The 'Holy Grail' of Automation

1.  Provide automated build process: easier and quicker to
validate changes

2.  Provide unit tests: check if changes break anything
3.  Join together – automated build and test: a fail fast

environment for community development
4.  Use Continuous Integration (CI): automate building,

testing, even deployment, of code as changes are made

•  Each step awards new benefits immediately!

How does CI Work?

1.  You make and commit code changes to your repository
2.  A CI server is configured to notice these commits and

independently checks out your code from revision control and
performs a number of predefined steps automatically (like
build, test, deploy).

3.  Reports produced, e.g.
§  Ongoing progress as build, test, deploy are attempted
§  Final success/failure summary, along with errors encountered

•  Expected to use CI from the start for CESSDA

CI within CESSDA

•  CESSDA uses Jenkins
§  Popular, extensible, open source CI server
§  When changes are committed, it runs a Jenkins job
§  Very flexible deployment

•  You can define automated steps within a Jenkins pipeline
§  Defined within a Jenkinsfile file in repository root
§  Two approaches:

•  Declaratively: define high-level steps for Jenkins job
•  Scripted: more flexible, define steps using Groovy language

•  We'll show enough to get started - declarative method

Using Jenkins to Build and Deploy Code

•  Jenkinsfile invokes the Maven commands we used previously
§  NB: depends on Jenkins CI infrastructure having same tools installed

•  Structured around pipeline, containing
§  At least one agent: environment to run job, e.g. Docker image, or any
§  Number of stages: each stage (e.g. build, test) contains sequence of

commands, called steps

•  Let's take a look at our repo's Jenkinsfile now

Session 3: Practical…

Question: Confess!

•  Why don’t you write tests?
§  “I don’t write buggy code”
§  “It’s too hard”
§  “It’s not interesting”
§  “It takes too much time and I’ve research to do”

What Testing Gives You

•  What testing gives you:
§ Confidence that your code does what it is supposed to
§  That your research is built on a solid foundation
§  Ability to detect, and fix, bugs more quickly
§ Correct code (bugs caught early in the cycle)
§ Confidence to refactor or fix bugs without creating new bugs
§  Examples of how to use your code

“If it's not tested, it's broken”
 - bittermanandy, 10/09/2010

Examples of Unit Testing Frameworks

•  Fortran: FRUIT, pFUnit
•  R: RUnit, testthat
•  MATLAB: Unit Testing Framework
•  .NET: csUnit
•  PHP: PHPUnit, PHP Unit Testing Framework
•  Python: Nose, Autotest, PyTest
•  Java: jUnit

Session 3: Practical continued

Exercise: Write your own Unit Tests

•  Consider what aspects of your code should be tested
•  Write 2-3 jUnit tests, adding to the FibonacciTest class, to

check your code handles them correctly
•  Whilst writing these, also create a test that deliberately

fails so you can see what happens to the results

Session 3: Practical continued…

Test Driven Development (TDD)

•  Writing tests good way to define how functions behave
•  Instead of writing tests afterwards, write them first

§  Tests become a 'contract' for how function should work
•  Process

§ Write some unit tests for a function that doesn’t exist yet
§ Write that function
§ Modify it until it passes all of the tests
§ Clean up (or refactor) the function

TDD: Red, Green, Refactor

1.  Get a red light (i.e., some failing tests)
2.  Make it turn green (i.e., get something working)
3.  Then clean it up by refactoring

•  This cycle should take anywhere from a couple of minutes
to an hour or so. If it takes longer than that, the change
being made is probably too large, and should be broken
down into smaller (and more comprehensible) steps.

Exercise: Implement a new feature using
TDD
•  Think of a new feature you would like to add to your code
•  Write the unit tests for it first
•  Then implement the feature in the code, and rerun the

tests.
•  Once successful, refactor your code as necessary

§ Make it more readable
§  Add comments for other developers (including yourself)
§  Ensure your tests still pass after refactoring!

Session 3: Practical continued…

Wrap-up

Key Points

•  We've covered quite a bit!

•  Develop according to CESSDA's Technical Architecture
•  Adhering to Technical Architecture recommendations

greatly increases chances of acceptance
•  Use CESSDA Software Maturity Levels questionnaire to

assess readiness
•  Take huge advantage of CESSDA Continuous Integration
•  Include suitable suite of tests for your software

Start as you mean to go on

•  Many projects deal with things like software
documentation, licensing, and sustainability way too late
§  SSI and Southampton's RSG deal with these frequently
§ Much harder to address things later

•  CESSDA's guidelines embody best practice
§ Work on them – and adopt good habits – early
§ Greatly increases chances of acceptance into CESSDA RI
§  Just use them for any development!

Closing remarks

•  Training materials online (with slides)
§  https://softwaresaved.github.io/2018-09-26-cessda-training/index.html

•  Huge thanks to
§  Local hosts
§  John Shepherdson
§  Our volunteer helpers, Peter, Wilko

•  Thank you!

Thanks for listening

•  Any questions?

